Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J. venom. anim. toxins incl. trop. dis ; 28: e20210103, 2022. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1386129

ABSTRACT

Background: Several studies have been published on the characterization of Trimeresurus venoms. However, there is still limited information concerning the venom composition of Trimeresurus species distributed throughout Indonesia, which contributes to significant snakebite envenomation cases. The present study describes a comparative on the composition of T. albolabris, T. insularis, T. puniceus, and T. purpureomaculatus venoms originated from Indonesia. Methods: Protein content in the venom of four Trimeresurus species was determined using Bradford assay, and the venom proteome was elucidated using one-dimension SDS PAGE nano-ESI- LCMS/MS shotgun proteomics. Results: The venom of T. albolabris contained the highest protein content of 11.1 mg/mL, followed by T. puniceus, T. insularis and T. purpureomaculatus venom with 10.7 mg/mL, 8.9 mg/mL and 5.54 mg/mL protein, respectively. In total, our venomic analysis identified 65 proteins belonging to 16 protein families in T. purpureomaculatus; 64 proteins belonging to 18 protein families in T. albolabris; 58 different proteins belonging to 14 protein families in T. puniceus; and 48 different proteins belonging to 14 protein familiesin T. insularis. Four major proteins identified in all venoms belonged to snake venom metalloproteinase, C-type lectin, snake venom serine protease, and phospholipase A2. There were 11 common proteins in all venoms, and T. puniceus venom has the highest number of unique proteins compared to the other three venoms. Cluster analysis of the proteins and venoms showed that T. puniceus venom has the most distinct venom composition. Conclusions: Overall, the results highlighted venom compositional variation of four Trimeresurus spp. from Indonesia. The venoms appear to be highly similar, comprising at least four protein families that correlate with venom's toxin properties and function. This study adds more information on venom variability among Trimeresurus species within the close geographic origin and may contribute to the development of optimum heterologous antivenom.(AU)


Subject(s)
Trimeresurus/physiology , Proteome/analysis , Crotalid Venoms/chemistry , Indonesia
2.
J. venom. anim. toxins incl. trop. dis ; 26: e20200043, 2020. tab
Article in English | LILACS, VETINDEX | ID: biblio-1135129

ABSTRACT

Trimeresurus stejnegeri stejnegeri bite induces tissue swelling, pain, thrombocytopenia, rhabdomyolysis, and acute renal failure. However, the incidence of coagulopathy, factors associated with wound necrosis, and the appropriate management of this condition have not been well characterized yet. Materials: This study included patients bitten by T. s. stejnegeri that were admitted to the study hospitals from 2001 to 2016. Patient characteristics, laboratory data, and management approaches were compared in victims with and without wound necrosis. Results: A total of 185 patients were evaluated: three patients (1.6%) were asymptomatic; whereas tissue swelling and pain, local ecchymosis, wound necrosis, coagulopathy, thrombocytopenia, rhabdomyolysis, and renal impairment were present in 182, 53, 13, 15, 10, 1, and 3 patients, respectively. One patient died from coagulopathy and hemorrhagic shock. Antivenom was administered to all envenomed patients at a median time of 1.8 h after the bite. The median total dose of antivenom was five vials. Chi-square analysis showed that bitten fingers, using cold packs during first aid, presence of bullae or blisters, lymphangitis or lymphadenitis, local numbness and suspected infection to be significantly associated with wound necrosis. After adjustment using a multivariate logistic regression model, only cold packs as first aid, bulla or blister formation, and wound infection remained significant. Conclusions: The main effects of T. s. stejnegeri envenomation are tissue swelling, pain, and local ecchymosis. We do not recommend the use of cold packs during first aid to reduce wound pain, as this may be a risk factor for wound necrosis. In addition, patients with bulla or blister formation should be carefully examined for subsequent wound necrosis. Antiplatelet use may worsen systemic bleeding. No severe rhabdomyolysis or renal failure was observed in this large case series, we therefore considered that they were not prominent effects of T. s. stejnegeri bite.(AU)


Subject(s)
Animals , Thrombocytopenia , Bites and Stings , Antivenins , Risk Factors , Trimeresurus , Crotalid Venoms , Necrosis , Wounds and Injuries
3.
J. venom. anim. toxins incl. trop. dis ; 26: e20200056, 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1135145

ABSTRACT

The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. Methods: T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. Results: Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. Conclusion: Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.(AU)


Subject(s)
Animals , Snake Venoms , Antivenins , Chickens , Trimeresurus , Antibodies , Bacteriophages
4.
J. venom. anim. toxins incl. trop. dis ; 26: e20200013, 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1135156

ABSTRACT

The Asiatic pit vipers from the Trimeresurus complex are medically important venomous snakes. These pit vipers are often associated with snakebite that leads to fatal coagulopathy and tissue necrosis. The cytotoxic venoms of Trimeresurus spp.; however, hold great potential for the development of peptide-based anticancer drugs. Methods: This study investigated the cytotoxic effect of the venom from Trimeresurus purpureomaculatus, the mangrove pit viper (also known as shore pit viper) which is native in Malaysia, across a panel of human cancer cell lines from breast, lung, colon and prostate as well as the corresponding normal cell lines of each tissue. Results: The venom exhibited dose-dependent cytotoxic activities on all cell lines tested, with median inhibition concentrations (IC50) ranging from 0.42 to 6.98 µg/mL. The venom has a high selectivity index (SI = 14.54) on breast cancer cell line (MCF7), indicating that it is significantly more cytotoxic toward the cancer than to normal cell lines. Furthermore, the venom was fractionated using C18 reversed-phase high-performance liquid chromatography and the anticancer effect of each protein fraction was examined. Fraction 1 that contains a hydrophilic low molecular weight (approximately 7.5 kDa) protein was found to be the most cytotoxic and selective toward the breast cancer cell line (MCF7). The protein was identified using liquid chromatography-tandem mass spectrometry as a venom disintegrin, termed purpureomaculin in this study. Conclusion: Taken together, the findings revealed the potent and selective cytotoxicity of a disintegrin protein isolated from the Malaysian T. purpureomaculatus venom and suggested its anticancer potential in drug discovery.(AU)


Subject(s)
Animals , Trimeresurus , Disintegrins , Cytotoxicity, Immunologic , Neoplasms , Viper Venoms , Antineoplastic Agents
5.
J. venom. anim. toxins incl. trop. dis ; 26: e20200053, 2020. graf
Article in English | LILACS, VETINDEX | ID: biblio-1135159

ABSTRACT

Snakebites remain a major life-threatening event worldwide. It is still difficult to make a positive identification of snake species by clinicians in both Western medicine and Chinese medicine. The main reason for this is a shortage of diagnostic biomarkers and lack of knowledge about pathways of venom-induced toxicity. In traditional Chinese medicine, snakebites are considered to be treated with wind, fire, and wind-fire toxin, but additional studies are required. Methods: Cases of snakebite seen at the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine were grouped as follows: fire toxin - including four cases of bites by Agkistrodon acutus and three bites by Trimeresurus stejnegeri - and wind-fire toxin - four cases of bites by vipers and three bites by cobras. Serum protein quantification was performed using LC-MS/MS. Differential abundance proteins (DAPs) were identified from comparison of snakebites of each snake species and healthy controls. The protein interaction network was constructed using STITCH database. Results: Principal component analysis and hierarchical clustering of 474 unique proteins exhibited protein expression profiles of wind-fire toxins that are distinct from that of fire toxins. Ninety-three DAPs were identified in each snakebite subgroup as compared with healthy control, of which 38 proteins were found to have significantly different expression levels and 55 proteins displayed no expression in one subgroup, by subgroup comparison. GO analysis revealed that the DAPs participated in bicarbonate/oxygen transport and hydrogen peroxide catabolic process, and affected carbon-oxygen lyase activity and heme binding. Thirty DAPs directly or indirectly acted on hydrogen peroxide in the interaction network of proteins and drug compounds. The network was clustered into four groups: lipid metabolism and transport; IGF-mediated growth; oxygen transport; and innate immunity. Conclusions: Our results show that the pathways of snake venom-induced toxicity may form a protein network of antioxidant defense by regulating oxidative stress through interaction with hydrogen peroxide.(AU)


Subject(s)
Animals , Snake Venoms , Biomarkers , Oxidative Stress , Hydrogen Peroxide , Antioxidants , Trimeresurus , Proteome/analysis
6.
J. venom. anim. toxins incl. trop. dis ; 22: 23, 2016. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-954805

ABSTRACT

Background Snakebite incidence in southwestern China is mainly attributed to one of the several venomous snakes found in the country, the white-lipped green pit viper Trimeresurus albolabris. Since antivenom produced from horses may cause numerous clinical side effects, the present study was conducted aiming to develop an alternative antivenom antibody (immunoglobulin Y - IgY) from leghorn chickens. Methods IgY in egg yolk from white leghorn chicken previously injected with T. albolabris venom was extracted by water, precipitated by ammonium sulfate and purified by affinity chromatographic system. IgY was identified by SDS-PAGE, ELISA and Western blot, and its neutralizing assay was conducted on mice. Results Chickens injected multiple times with T. albolabris venom elicited strong antibody responses, and from their egg yolk IgY was isolated and purified, which exhibited a single protein band on SDS-PAGE and two bands (about 65 and 35 kDa, respectively) under reduced conditions. Immunoblot analysis revealed that these IgY are polyclonal antibodies since they bind with most venom components. In the neutralizing assay, all mice survived while the ratios of IgY/venom reached up to 3.79 (50.0 mg/13.2 mg). Conclusions IgY antibody response was successfully conducted in white leghorn chicken injected with T. albolabrisvenom. IgY against T. albolabris venom was obtained for the first time, and it exhibited strong neutralizing potency on mice. These results may lay a foundation for the development of IgY antivenom with clinical applications in the future.(AU)


Subject(s)
Animals , Immunoglobulins , Antivenins , Trimeresurus/immunology , Antibodies , Electrophoresis, Polyacrylamide Gel
7.
J. venom. anim. toxins incl. trop. dis ; 22: [1-6], 2016. ilus, graf
Article in English | LILACS, VETINDEX | ID: biblio-1484672

ABSTRACT

Snakebite incidence in southwestern China is mainly attributed to one of the several venomous snakes found in the country, the white-lipped green pit viper Trimeresurus albolabris. Since antivenom produced from horses may cause numerous clinical side effects, the present study was conducted aiming to develop an alternative antivenom antibody (immunoglobulin Y - IgY) from leghorn chickens. Methods IgY in egg yolk from white leghorn chicken previously injected with T. albolabris venom was extracted by water, precipitated by ammonium sulfate and purified by affinity chromatographic system. IgY was identified by SDS-PAGE, ELISA and Western blot, and its neutralizing assay was conducted on mice. Results Chickens injected multiple times with T. albolabris venom elicited strong antibody responses, and from their egg yolk IgY was isolated and purified, which exhibited a single protein band on SDS-PAGE and two bands (about 65 and 35 kDa, respectively) under reduced conditions. Immunoblot analysis revealed that these IgY are polyclonal antibodies since they bind with most venom components. In the neutralizing assay, all mice survived while the ratios of IgY/venom reached up to 3.79 (50.0 mg/13.2 mg). Conclusions IgY antibody response was successfully conducted in white leghorn chicken injected with T. albolabrisvenom. IgY against T. albolabris venom was obtained for the first time, and it exhibited strong neutralizing potency on mice. These results may lay a foundation for the development of IgY antivenom with clinical applications in the future.


Subject(s)
Animals , Immunoglobulins/biosynthesis , Crotalid Venoms/analysis , Crotalid Venoms/isolation & purification , Crotalid Venoms/chemistry , Trimeresurus/immunology
8.
Indian J Exp Biol ; 2013 Dec; 51(12): 1063-1069
Article in English | IMSEAR | ID: sea-150293

ABSTRACT

The major hemorrhagin from C. purpureomaculatus (mangrove pit viper) venom was purified to homogeneity and termed Maculatoxin. Maculatoxin has a molecular weight of 38 kDa as determined by SDS-PAGE. It is an acidic protein (pI= 4.2) and exhibited proteolytic and hemorrhagic activities (MHD10 = 0.84 μg in mice) but was not lethal to mice at a dose of 1 μg/g. The hemorrhagic activity of Maculatoxin was completely inactivated by EDTA and partially inhibited by ATP and citrate. The N-terminal sequence of Maculatoxin (TPEQQRFPPTYIDLGIFVDHGMYAT) shares a significant degree of homology with the metalloprotease domain of other venom hemorrhagins. Indirect ELISA showed anti-Maculatoxin cross reacted with protein components of many snake venoms. In the double-sandwich ELISA, however, anti-Maculatoxin cross-reacted only with venoms of certain species of the Trimeresurus (Asia lance-head viper) complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex


Subject(s)
Animals , Chromatography, Gel , Cross Reactions/immunology , Endopeptidases/chemistry , Endopeptidases/immunology , Endopeptidases/isolation & purification , Mice , Molecular Weight , Snake Venoms/genetics , Snake Venoms/immunology , Species Specificity , Trimeresurus/immunology , Trimeresurus/physiology
9.
Southeast Asian J Trop Med Public Health ; 2006 Sep; 37(5): 937-9
Article in English | IMSEAR | ID: sea-35073

ABSTRACT

The incidence of venomous snake bites increases every year in Thailand, especially due to green pit viper. After the bite, there is bleeding due to thrombin-like property of the venom. The mean platelet volume has been reported to be decreased in those who have been bitten by this snake. In this study we investigate the effect of green pit viper venom (Trimeresurus albolabris) on platelet volume (MPV), number and morphology of platelets in vitro. The test was carried out by washing platelets in phosphate buffer at pH 7.2 to remove fibrinogen, then the washed platelets were mixed with green pit viper venom. Platelet morphology was examined by scanning electron microscope (SEM).The morphology of platelets was smaller than normal which ranges from 1.1- 1.2 microm. Green pit viper venom can directly effect platelet morphology, decreasing platelet volume.


Subject(s)
Animals , Blood Platelets/cytology , Cell Size/drug effects , Crotalid Venoms/pharmacology , Humans , Microscopy, Electron, Scanning , Platelet Count , Thailand , Trimeresurus
10.
Southeast Asian J Trop Med Public Health ; 1993 Dec; 24(4): 772-5
Article in English | IMSEAR | ID: sea-34949

ABSTRACT

The clinical features and hospital management of 31 patients who were bitten by the white-lipped green pit viper (Trimeresurus albolabris) in Hong Kong are reviewed. The cardinal features in these patients were local pain and swelling and mild coagulation abnormalities. Hospital management should include prophylaxis against tetanus, analgesics and measures to reduce local effects such as elevation of the limb. The benefits of the use of prophylactic antibiotics remain to be established. Severe coagulation disturbances were uncommon and responded to fresh frozen plasma and platelet transfusion.


Subject(s)
Adolescent , Adult , Aged , Aged, 80 and over , Animals , Blood Coagulation Disorders/etiology , Combined Modality Therapy , Drug Therapy, Combination , Female , Hong Kong , Humans , Male , Middle Aged , Snake Bites/complications , Trimeresurus
SELECTION OF CITATIONS
SEARCH DETAIL